Generate Private Key From Public Key Incommon

Skip to end of metadataGo to start of metadata

SAML Certificates in Federation Metadata

Generate online private and public key for ssh, putty, github, bitbucket Save both of keys on your computer (text file, dropbox, evernote etc)!!! The generated keys are RANDOM and CAN'T be restored. Press generate and follow instructions to generate (public/private) key pair. Create a new 'authorizedkeys' file (with Notepad): Copy your public key data from the 'Public key for pasting into OpenSSH authorizedkeys file' section of the PuTTY Key Generator, and paste the key data to the 'authorizedkeys' file. To change the passphrase, run the following command: $ ssh-keygen –p After you confirm your passphrase, the utility runs and generates your public key and private key within files that match your specified file name. Go to your key folder directory and ensure. First, create the key pair: sn -k keypair.snk Next, extract the public key from the key pair and copy it to a separate file: sn -p keypair.snk public.snk Once you create the key pair, you must put the file where the strong name signing tools can find it.

To generate the public/private key pair, enter this in the Command Prompt: ssh-keygen At the first prompt, “Enter file in which to save the key,” press Enter to save it in the default location. Generate RSA keys with SSH by using PuTTYgen. Last updated on: 2016-06-23; Authored by: Rackspace Support; One effective way of securing SSH access to your cloud server is to use a public-private key pair. This means that a public key is placed on the server and a private key is placed on your local workstation. Using a key pair makes it. Sep 12, 2014 OpenSSL is a versatile command line tool that can be used for a large variety of tasks related to Public Key Infrastructure (PKI) and HTTPS (HTTP over TLS). This cheat sheet style guide provides a quick reference to OpenSSL commands that are useful in common, everyday scenarios.

This article discusses the use of X.509 certificates in Federation metadata. It has security implications so please read it carefully.

A SAML entity uses public key cryptography to secure the data transmitted to trusted partners. Public keys are published in the form of X.509 certificates in metadata whereas the corresponding private keys are held securely by the entity. These keys are used for message-level signing and encryption, and to create secure back channels for transporting SAML messages over TLS. They are not used for browser-facing TLS transactions on port 443. See the Key Usage topic for more information.

Uses of Certificates in Metadata

Certificates in metadata are used for message-level signing and encryption, not browser-facing TLS transactions on port 443.

The InCommon Federation is based on the Explicit Key Trust Model, one of several possible metadata trust models. Consequently, the use of long-lived, self-signed certificates in metadata is strongly recommended. Certificates signed by a Certification Authority (CA) are allowed, and in most situations will work just fine, but the use of certificates other than self-signed certificates is discouraged. See the Background information and the Interoperability notes below for further discussion.

Trust the Key, Not the Certificate

From a security perspective, the only element of a certificate in metadata that matters is the public key. Conforming software will ignore all other certificate content.

Any certificates you want to use with your SAML software are uploaded via the Federation Manager. Typically only one certificate is required per entity but multiple certificates may be uploaded and used as needed. In particular, multiple certificates may be used to facilitate the controlled rollover of expired certificates or compromised keys. To avoid interoperability problems, refer to the Certificate Migration topic for recommended guidelines regarding the rollover process.

It is easy to create a self-signed certificate with the OpenSSL command-line tool. Before you do this, however, take a moment to consider how best to handle the all-important private key.

Prepare to Generate a New Private Signing Key!

https://vihigh-power694.weebly.com/blog/arturia-cs-80v-mac-download. Before generating a new private signing key for your IdP, read the IdP Key Handling topic.

Contents

Background

In the base SAML metadata specification [1], a certificate signing authority (CA) has no assumed relevance to the trust model that secures the interactions among a federation's participants. In fact, certificates signed by a CA are discouraged since they can create interoperability issues in certain situations and lead to configurations that mistakenly establish trust based on the certificate signer. Allowing self-signed certificates simplifies the work of participants who may be required to join multiple federations, or who support local systems that are not registered in the Federation.

InCommon conforms to the SAML V2.0 Metadata Interoperability Profile [2] from OASIS. Participant site administrators securely transmit X.509 certificates and metadata to InCommon via the administrative web interface. InCommon signs the entire metadata file, securing the keys of its participants whether those keys are bound to self-signed certificates or certificates signed by a CA. The critical element in the certificate is the public key, which is associated with an entity via its entity ID. Theoretically, if all the relevant software systems could accept a public key without a certificate wrapper, InCommon would only need to include the public key of each entity. As it is, the certificate is a convenient container for the public key, the critical element being that the key is bound to a particular entity in the metadata.

Generate Private Key From Public Key In Common Practice

Public key definition

Requirements

InCommon sets the following security and trust requirements around certificates included in Federation metadata:

  • The use of long-lived, self-signed certificates in Federation metadata is strongly RECOMMENDED.
    • Certificates with lifetimes of at least 10 years are RECOMMENDED to avoid unnecessary technically-imposed deadlines on key rollover.
    • Certificates SHOULD expire before 2038 to avoid the so-called Year 2038 problem.
  • RSA keys with a minimum size of 2048 bits MUST be used for all new certificates introduced into Federation metadata.
    • New certificates with key sizes less than 2048 bits are not allowed in Federation metadata.
    • Certificates with keys greater than 2048 bits are NOT RECOMMENDED since such keys force relying parties to perform unnecessary computation.
  • Expired certificates SHOULD NOT be introduced into Federation metadata. An expired certificate in metadata SHOULD be removed once a certificate migration process to a new certificate has been completed.
    • A certificate's expiration date has nothing to do with the security of the corresponding private key, which is an ongoing concern.
  • If a private key is lost or stolen, immediate steps MUST be taken to configure a new private key and to introduce the corresponding public key certificate into metadata. Since there are no other known attacks on RSA 2048-bit keys, generating a new private key for any other purpose is NOT RECOMMENDED.
  • Service providers MUST include an encryption key in SP metadata.
    • The encryption key is used by IdPs to encrypt SAML V2.0 assertions transmitted to the SP.
  • InCommon does not validate Subject information in self-signed certificates because this information is irrelevant from a security perspective. However, at its discretion, InCommon will reject metadata submissions if that submission contains a certificate with fields that contain egregiously misrepresented Subject information as decided by InCommon on a case-by-case basis. Generally, Subject information should express a somewhat reasonable relationship between the certificate and the organization.

Interoperability

Consider the following interoperability issues as you set up and maintain your deployment:

  • A potential federation partner (especially a partner not using the Shibboleth software) may question the use of self-signed certificates. As discussed in the Background section, there are, in fact, fewer interoperability issues with self-signed certificates compared to CA-signed certificates.
  • The Shibboleth software does not check the expiration dates of certificates [4], but expired certificates often cause interoperability issues with other software (such as AD FS 2.0 and the OIOSAML Java SP) and with older versions of Apache used to deploy the Shibboleth IdP. InCommon recommends that you plan ahead and migrate to an unexpired certificate well ahead of your certificate's expiration date.
  • For key management purposes, InCommon allows multiple certificates per role descriptor at any time. (You can log into the administrative interface, select a particular role, and associate more than one certificate with that role for the purposes of migrating from one certificate to another.) Bear in mind, however, that some SAML implementations do not support multiple keys properly and you may want to test this capability with your non-Shibboleth partners. For example:
    • EZProxy is known to ignore additional keys beyond the first.
    • AD FS 2.0 will not consume an <md:EntityDescriptor> element containing more than one encryption key.
  • At the deployer's convenience, a single certificate may be bound to multiple SPs in InCommon metadata. However, some implementations (e.g., AD FS 2.0) do not allow the same certificate to be used by two distinct entities.
  • If the certificate will be used for TLS server authentication, the certificate's CN (and/or subjectAltName) value should match the server's hostname. This is especially true for IdPs but may also be true in certain advanced scenarios where the SP acts as a SOAP responder.
  • Avoid certificates with special certificate extensions, since some implementations will actually try to use them. For example, AD FS 2.0 will attempt to access the CRL at the location given in the CRL Distribution Point certificate extension.

References

[1] Metadata for the OASIS Security Assertion Markup Language (SAML) V2.0http://saml.xml.org/saml-specifications
[2] SAML V2.0 Metadata Interoperability Profilehttp://wiki.oasis-open.org/security/SAML2MetadataIOP
[3] X.509 Certificates in the Federation Metadata: A technical webinar presented by the InCommon Technical Advisory Committee (October 22, 2009)
[4] The Shibboleth ExplicitKey Trust Enginehttps://wiki.shibboleth.net/confluence/display/SHIB2/ExplicitKeyTrustEngine
]5] Shibboleth Security and Networkinghttps://wiki.shibboleth.net/confluence/x/VoEOAQ

Several tools exist to generate SSH public/private key pairs. The following sections show how to generate an SSH key pair on UNIX, UNIX-like and Windows platforms.

Generating an SSH Key Pair on UNIX and UNIX-Like Platforms Using the ssh-keygen Utility

UNIX and UNIX-like platforms (including Solaris and Linux) include the ssh-keygen utility to generate SSH key pairs.

To generate an SSH key pair on UNIX and UNIX-like platforms using the ssh-keygen utility:

Generate Rsa Public Private Key

  1. Navigate to your home directory:
  2. Run the ssh-keygen utility, providing as filename your choice of file name for the private key:

    The ssh-keygen utility prompts you for a passphrase for the private key.

  3. Enter a passphrase for the private key, or press Enter to create a private key without a passphrase:

    Note:

    While a passphrase is not required, you should specify one as a security measure to protect the private key from unauthorized use. When you specify a passphrase, a user must enter the passphrase every time the private key is used.

    The ssh-keygen utility prompts you to enter the passphrase again.

  4. Enter the passphrase again, or press Enter again to continue creating a private key without a passphrase:
  5. The ssh-keygen utility displays a message indicating that the private key has been saved as filename and the public key has been saved as filename.pub. It also displays information about the key fingerprint and randomart image.

Generating an SSH Key Pair on Windows Using the PuTTYgen Program

The PuTTYgen program is part of PuTTY, an open source networking client for the Windows platform.

To generate an SSH key pair on Windows using the PuTTYgen program:
  1. Download and install PuTTY or PuTTYgen.

    To download PuTTY or PuTTYgen, go to http://www.putty.org/ and click the You can download PuTTY here link.

  2. Run the PuTTYgen program.
  3. Set the Type of key to generate option to SSH-2 RSA.
  4. In the Number of bits in a generated key box, enter 2048.
  5. Click Generate to generate a public/private key pair.

    As the key is being generated, move the mouse around the blank area as directed.

  6. (Optional) Enter a passphrase for the private key in the Key passphrase box and reenter it in the Confirm passphrase box.

    Note:

    While a passphrase is not required, you should specify one as a security measure to protect the private key from unauthorized use. When you specify a passphrase, a user must enter the passphrase every time the private key is used. Osx seirra generate new ssh keys.

  7. Click Save private key to save the private key to a file. To adhere to file-naming conventions, you should give the private key file an extension of .ppk (PuTTY private key).

    Note:

    The .ppk file extension indicates that the private key is in PuTTY's proprietary format. You must use a key of this format when using PuTTY as your SSH client. It cannot be used with other SSH client tools. Refer to the PuTTY documentation to convert a private key in this format to a different format.
  8. Select all of the characters in the Public key for pasting into OpenSSH authorized_keys file box.

    Make sure you select all the characters, not just the ones you can see in the narrow window. If a scroll bar is next to the characters, you aren't seeing all the characters.

  9. Right-click somewhere in the selected text and select Copy from the menu.
  10. Open a text editor and paste the characters, just as you copied them. Start at the first character in the text editor, and do not insert any line breaks.
  11. Save the text file in the same folder where you saved the private key, using the .pub extension to indicate that the file contains a public key.
  12. If you or others are going to use an SSH client that requires the OpenSSH format for private keys (such as the ssh utility on Linux), export the private key:
    1. On the Conversions menu, choose Export OpenSSH key.
    2. Save the private key in OpenSSH format in the same folder where you saved the private key in .ppk format, using an extension such as .openssh to indicate the file's content.